#258 – GUIDE TO AVIATION SAFETY – STEPHEN B. MILLER

Most of us travel by air and have probably wondered about the safety aspects of this mode of transportation, especially in light of the almost daily news media reports of accidents, terrorist plots, problems involving aircraft crews etc. The 737 MAX debacle alone would give anyone pause! This guide gives a broad picture of how the entire aviation industry works and will hopefully shed some light on the question “how safe is it?”.

THE BIG PICTURE

The entire “umbrella” under which all domestic aviation functions is managed by the DOT’s Federal Aviation Administration (FAA), with some exceptions for military operations. The FAA likewise operates under Title 14 of the Code of Federal Regulations  (CFR). This section of the CFR covers all aspects of aviation, such as the airspace system, airports, aircraft, air traffic control (ATC), personnel (airmen, mechanics, avionics technicians and others), flight schools, repair stations, manufacturers etc. The FAA website (www.faa.gov) covers it completely. It should be noted that safety is paramount in the eyes of the FAA. In view of the fact that the flying public is primarily interested in airline safety, the following sections will focus on this subject, with a brief mention of general aviation (GA) as well, which refers to all other civil aircraft such as privately owned single/twin engine aircraft, homebuilt/experimental types, business jets/turboprops etc. Please note that the issue of security involving the TSA is a related subject beyond the scope of this guide.

THE AIRSPACE SYSTEM

This is the environment in which all aircraft operate and necessarily includes airports, flight routes and ATC. Considerable time, energy and funding have gone into upgrading/modernizing this highly complex system. Domestic passenger growth of air carrier (airline) operations are expected to increase 1.8% per year over the next 20 years, with the accompanying ATC operations increasing by 0.9% per year, largely due to air carrier activity. Using modern avionics technology, the system has migrated from  previous radar based monitoring to a far more sophisticated satellite (GPS), “air to ground” and “aircraft to aircraft “ approach in order to safely accommodate the ever increasing traffic volume. Even the current “party line” voice communication system is gradually being phased out in favor of modern “text based” equipment. The overarching concern with safety on the part of both the FAA and the aviation industry has resulted in only one fatal domestic air carrier accident since 2013! In contrast, the global record was 0.39 fatal accidents per million flights in 2018.

AIR TRAFFIC CONTROL (ATC)

This function is performed by a cadre of dedicated, well trained individuals, many of whom are also pilots. They also have a separate Air Traffic Organization (ATO) with an extensive, Safety Management System  (SMS) in place. They control and monitor all air carrier operations, both in the air and on the ground. This also applies for GA aircraft whenever controlled airspace or airports are involved. Control is exercised over all phases of flight, from from the starting point on the ramp through engine shutdown at the destination. Aircraft are carefully sequenced and separated by both route and altitude. Today’s safety achievements are due in no small part to the efforts of ATC.

AIRCRAFT

Air Carriers: These large transport category aircraft are closely regulated by the FAA, from design through final certification. The certification process is long, complex and costly, resulting in only a few corporations participating, Boeing and Airbus being the largest. The certification requirements are highly detailed and prescriptive, meaning the FAA requires certain processes to be in place; the FAA also utilizes a Safety Assurance System (SAS) to verify that the certification applicant is in fact doing things properly, including using Risk Based Decision Making (RBDM), for example. The limited resources of the FAA has often resulted in the delegation of the oversight activity to approved designees of the applicant’s own organization, believed to be the fundamental cause of the well publicized 737 MAX MCAS problem, for example. As a result, the FAA is considering tightening its control over the certification process, either through increased dialog or a more direct involvement, particularly in the design and testing phases. This would obviously require an increase in the inspection staff, sufficiently qualified to perform this complex function. The 737 MAX problem also begs the question of whether other outstanding aircraft certificates are potentially flawed as well! Reviewing these certificates only compounds the available resource problem. The FAA’s ultimate approach to this complex situation is a work in process and has not yet been resolved as of this writing. Despite these difficulties, bear in mind that the air carrier accident rate is still quite low; both the FAA and the aviation industry as a whole are working hard to “plug any holes” in the current system that maybe harboring potentially serious problems that may have been missed.

GA: This is a completely different picture from that of the air carrier aircraft industry. Briefly, in recent years the FAA has shifted from a prescriptive process to a “results oriented” one for commercially manufactured aircraft such as those supplied by CESSNA, PIPER and others. This means that these manufacturers are free to do things as they see fit, but must ultimately prove to the FAA that the aircraft is safe. Yet another class of aircraft called “Light Sport Aircraft” (LSA) are allowed to use an industry-wide set of “consensus-based” standards as well. This is mentioned only as a rough comparison to the approach taken in the air carrier case. Regardless, GA does have extensive SMS/SAS programs in place including excellent advice/training publications for the pilot community.

AIRMEN

Obviously, commercial airline pilots are licensed by the FAA. A commercial certificate with an instrument rating and sufficient experience is the minimum basic qualification to even apply for an entry level pilot position, known as 2nd officer (copilot). The 1st officer position (captain), on the other hand, requires an airline transport certificate (ATP), which involves significantly more knowledge and experience. Transport category aircraft require specific type ratings as well. Depending on industry needs, a college degree is also often required or at least desired. Flight training is typically accomplished through either civilian flight schools or their military equivalent. There are also several programs providing a college degree, coupled with flight training. A recent trend precipitated by the current pilot shortage provides training directly via the airline, essentially taking people “right off the street” and training them “from start to finish”, with the end result being the ATP certificate. All certificated civilian flight training schools and programs are highly regulated by the FAA, with the same focus on safety as the other segments of the system as previously described.

SUMMARY

While both the FAA and the aviation industry have gone to extreme lengths to promote safety, no system is perfect. Some things do “slip through the cracks”; there is a constant need for improvement. Funding the necessary resources is always a problem but policies and processes have been periodically updated over the years in any case. The information presented in this guide is only an overview but attempts to get the most important points across. The future will bring huge challenges such as the advent of unmanned aerial vehicles (UAV’s or DRONES) and the increasing trend toward automation, both of which will require new regulations. Automation alone will lead to much public scrutiny as it is gradually implemented over time. Whatever the outcome, the United States’ airspace system and air carrier operations are the safest in the world and will continue to improve!

BIO:

Steve is a retired EE with an aviation background. He began flying at age 16, has 6000 hours+ and has been a naval aviator flying AD-5N’s, Convair 240’s/440’s for Mohawk Airlines and a fixed base operator doing both flight instruction and corporate flying, including a stint with the Civil Air Patrol.

He has two separate 4-year degrees: A BS in Business from Miami University, Oxford, Ohio and a BSEE from UMASS Dartmouth. He’s worked for organizations both small and large, commercial and military in the areas of management, marketing and design, as well as experience as an avionics technician. His engineering career includes both analog/digital circuit design, printed circuit board layout and project management. He’s worked in several different industries: autopilots (Edo-Aire Mitchell, circa 1970), sonobuoys (Raytheon) and various digital data systems for Motorola, 3COM and others. His current passion is the development of safety enhancing instrumentation for general aviation aircraft. He’s also written articles many years ago predicting the coming of age of autonomous aircraft.

 

Leave a Reply

Your email address will not be published.